Chronic Diseases Journal Chronic

DOI: 10.22122/cdj.v10i2.728

Abstract

Published by Vesnu Publications

Prevalence of hydrocephalus in the patients with traumatic brain injury: A systematic review and meta-analysis

Arash Fattahi¹, Hamed Fattahi², Faeze Ghasemi Seproo³, <u>Azad Shokri</u>⁴

1 Department of Neurosurgery, School of Medicine, Iran University of Medical Sciences, Tehran, Iran

2 Center for Primary Health Care Network Management, Deputy for Public Health, Iran Ministry of Health and Medical Education, Tehran, Iran

3 Center for Health Human Resources Research and Studies, Ministry of Health and Medical Education, Tehran, Iran

4 Social Determinants of Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran

Review Article

BACKGROUND: The purpose of this study was determination of the prevalence of post-traumatic hydrocephalus (PTH) in patients who had traumatic brain injury (TBI) worldwide.

METHODS: Four electronic databases including Scopus, PubMed, Embase, and Web of Science were searched in this meta-analysis. The random-effects model was applied for the pooled effect size of $I^2 > 50\%$. Subgroup analysis was done to evaluate the heterogeneity, and the Egger's test was used to test the asymmetry of the funnel plots in order to assess the publication bias.

RESULTS: A total of 48 studies with 11624 patients were evaluated. The pooled prevalence of PTH was 13% [95% confidence interval (CI): 11.0-15.0] and according to decompressive craniectomy (DC) surgery was 22.0% (95% CI: 18.0-26.0). This result among patients with severe TBI (sTBI) was 16.0% (95% CI: 13.0-19.0) and it was higher in the developed countries. The prevalence of PTH was generally higher in studies with a sample size lower than 100 (21.0%) and was generally lower in studies conducted between 1990 to1999 (4.0%). These results were not too different according to the study design.

CONCLUSION: It is recommended to design a prospective clinical study in order to explain the true dynamics and circulation of the cerebrospinal fluid (CSF) after DC. Moreover, there is a need to evaluate the cost-effectiveness of DC in reducing the intracranial pressure in comparison with other available options. In fact, performing the clinical studies with higher quality in less developed countries could provide more reliable related results to achieve a true global conclusion.

KEYWORDS: Traumatic Brain Injury; Hydrocephalus; Decompressive Craniectomy; Meta-Analysis; Prevalence; Severe Head Injury

Date of submission: 25 Sep. 2021, Date of acceptance: 10 March 2022

Citation: Fattahi A, Fattahi H, Ghasemi Seproo F, Shokri A. **Prevalence of hydrocephalus in the patients** with traumatic brain injury: A systematic review and meta-analysis. Chron Dis J 2022; 10(2): 95-108.

Introduction

Traumatic brain injury (TBI) is an important source of health and medical concern in all societies.¹ In most countries, it is the most

Corresponding Author:

Azad Shokri; Social Determinants of Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran Email: azad shokri@yahoo.com important cause of mortality and disability in the young people. Nowadays, the incidence of TBI is rising in low- and middle-income countries because of the increase in the motor vehicle accidents.² Based on the World Health Organization (WHO) report, traffic-related accidents will be the third most prevalent cause of disease and injury by 2020 throughout the world.³ TBI-induced neurological damages are divided into primary injury (at the time of impact) or secondary injury (afterwards). Secondary injury is the leading cause of mortality after TBI.⁴ Hydrocephalus is among the important posttraumatic secondary injuries.⁵ It is characterized by the imbalance between production and resorption of the cerebrospinal fluid (CSF), which could cause the ventricular dilatation (ventriculomegaly) or enlargement of the subarachnoid space.⁶

Dandy reported about the presence of first clinical case of post-traumatic hydrocephalus (PTH) in 1914.7 If PTH cannot be diagnosed or treated, it may result in the increase in the rate of possible mortality after TBI.89 Besides, PTH is one of the causes of regression in the rehabilitation of the patients with TBI and it can lower final long-term cognitive and functional outcomes if it becomes prolonged before final treatment. On the other hand, PTH is a treatable secondary damage of TBI and timely intervention could improve the final outcome in these patients.^{8,10} Up to now, many reports have been published about the patients with PTH but despite the importance of this issue, there is no comprehensive study on the worldwide prevalence of the PTH in the patients with TBI. Given the importance of this complication, this study is designated and implemented to determine the global prevalence of hydrocephalus in patients who had TBI.

Methods

Our meta-analysis was done in compliance with the "Preferred Reporting Items for Systematic Reviews and Meta-Analyses" (PRISMA) guidelines.¹¹ We expected to identify the studies on the prevalence of hydrocephalus in the patients with TBI. This systematic review and meta-analysis was conducted by searching the papers in the four electronic databases including the Web of Science, Scopus, PubMed, and Embase. A general list of terms including the Medical Subject Headings (MeSH) terms on the hydrocephalus together with terms related to the brain injury was used.

Our searching sources consisted of health and interdisciplinary databases, grey literature sources, manual searching, and reference lists in the publications identified from other mentioned sources. The EndNote[®] software (version 7, Thomson Reuters, Philadelphia, PA, USA) was used to import search results.

Inclusion and exclusion criteria: In this study, the papers were excluded based on the language (only English language papers were included). All the studies concerning the hydrocephalous caused by the head trauma were included in the study. The studies that had used the qualitative methods were also excluded from the study.

Headings and certain papers were reviewed by two reviewers through discussing the hydrocephalus together with the terms related to TBI for the abstract review. All the listed headings were directly inserted into the EndNote software. Then, duplicate data were eliminated. In the abstract review step, all the studies on hydrocephalus not caused by the head trauma were excluded. Then, the whole text was reviewed to classify the studies. Herein, all the reviewed papers were completely analyzed, and particular papers were identified. Furthermore, a cross-search was carried out to identify any further related papers.

Data extraction and quality assessment: Selection of study and extraction of data were done by HF and AS evaluated the process over data extraction. The eligible data were extracted and tabulated by re-reading the information of the chosen papers including the authors, year(s) of conduction, year of publication, country where the study was done, study methods, sampling method, target population (pediatrics, adults, geriatrics, or all), number of patients undergoing the decompressive craniectomy (DC), study methods, mean age/age range (year), number of patients with TBI, and number of TBI patients with hydrocephalus.

The methodological quality of the papers was evaluated using a checklist (quality assessment checklist for prevalence studies) adapted from the study by Hoy et al.¹² According to this scale, the studies are graded with respect to the nine methodological criteria, with a total possible score of 9.

Statistical analysis: The Stata software Corporation, College (version 14.2, Stata Station, TX, USA) was used to calculate the pooled prevalence of hydrocephalus in the patients with TBI and subgroups analysis was also performed in various variables. The I² statistic with a cutoff of 50% was used to determine the heterogeneity between the studies. Random-effects model was applied for the pooled effect size of $I^2 > 50\%$.¹³ The Stata software was also utilized to generate the forest plots about the pooled prevalence, with 95% confidence interval (CI). In this study, Egger's test was applied to test the asymmetry

of the funnel plots in order to assess the publication bias, and subgroup analysis was done for the presence of heterogeneity. Sensitivity analysis was done to assess the dependency of overall estimate on a single study. We used the ArcGIS software to map the prevalence of hydrocephalus in the patients with TBI according to the country.

Results

According to the search results, among 4265 studies, 115 studies were included by excluding the duplicate papers (n = 1280), and the titles and abstracts that met the inclusion criteria for the meta-analysis were scanned. A total of 48 papers were selected for investigating the prevalence (Figure 1).

Table 1 shows the selected information about the included papers. A total of 48 studies with 11624 patients (ranging from 12 to 2374 per study) were evaluated in this meta-analysis.

Figure 1. Flow diagram showing the different phases of searching for relevant publication

Table 1. Characteristics of included studies									
The first author, publication year	Year of survey	Country	Study design	Target population	Sampling method	Trauma patients (sample size)	Type of trauma injury	No. of patients undergoing DC	No. of patients with hydrocephalus
Beauchamp K, 2010 ¹⁴	2003-2007	USA	N/A	N/A	Census	69	N/A	N/A	14
De Bonis P, 2013 ¹⁵	2007-2011	Italy	N/A	All	Census	64	Closed TBI	64	19
Chen H, 2017 ¹⁶	2012-2015	China	Retrospective	Adult patients	Census	527	N/A	N/A	57
Chen L, 2016 ¹⁷	2004-2008	China	Retrospective	All	Census	44	Motor vehicle accident	N/A	3
d'Avella D, 2003 ¹⁸	1997-1999	Italy	Clinical trial	All	Census	24	N/A	24	11
De Bonis P, 2010 ¹⁹	2006-2009	Italy	Retrospective	All	Census	26	Road accidents Traumatic	26	9
Demircivi F, 1993 ²⁰	1985-1990	Turkey	Retrospective	All	Census	89	subarachnoid hemorrhage	N/A	2
Di G, 2018 ²¹	2013-2016	China	Retrospective	All	N/A	121	N/A	121	23
Cardoso ER, 1985 ²²	1976-1981	Scotland	Retrospective	All	Census	2374	Severe head injury	N/A	17
Faleiro R, 2008 ²³	2003-2005	Brazil	Retrospective	N/A	Census	89	Severe, moderate, mild TBI	89	7
Fotakopoulos G, 2016 ²⁴	2009-2013	Greece	Retrospective	N/A	Census	126	N/A	126	20
Ganesh S, 2013 ²⁵	1996-2007	USA	Prospective, cross-sectional, observational	All	Census	157	N/A	N/A	44
Groswasser Z, 1988 ⁹	1981-1985	Israel	N/A	N/A	N/A	335	Severe cranio- cerebral injury	N/A	13
Honeybul S, 2010 ²⁶	2006-2007	Australia	Retrospective	N/A	Census	41	Severe head injury	41	4
Honeybul S, 2011 ²⁷	2004-2009	Australia	Retrospective	All	Census	164	Ň/Ă	164	23
Honeybul S, 2014 ²⁸	2004-2012	Western Australia	Cross-sectional	All	Census	270	Severe TBI	N/A	33

98 Chron Dis J, Vol. 10, No. 2, Spring 2022

Table 1. Characteristics of included studies (continue)									
The first author, publication year	Year of survey	Country	Study design	Target population	Sampling method	Trauma patients (sample size)	Type of trauma injury	No. of patients undergoing DC	No. of patients with hydrocephalus
Jovanovic MJ, 2015 ²⁹	N/A	Serbia	Case-control	All	N/A	97	N/A	N/A	8
Kaen A, 2010 ³⁰	2000-2006	Spain	Retrospective	N/A	Census	73	Severe head injury	73	20
Kan P, 2006 ³¹	1996-2005	USA	Retrospective	Children	Census	51	Severe TBI	51	14
Khan Z, 2012 ³²	2009-2010	Pakistan	Retrospective	N/A	Census	154	Bomb blast head injuries	N/A	5
Ki HJ, 2015 ³³	2007-2014	Korea	Retrospective	All	Census	92	N/A	92	24
Kim H, 2017 ³⁴	2005-2016	Korea	N/A	N/A	Census	63	Acute traumatic SDH	N/A	34
Kishore PR, 1978 ³⁵	N/A	USA	Cross-sectional	N/A	N/A	29	N/A	N/A	4
Low CY, 2013 ³⁶	1999-2006	Singapore	Retrospective	All	Census	871	Road traffic accident	N/A	23
Lv LQ, 2011 ³⁷	2007-2008	China	Cross-sectional	All	Census	79	N/A	N/A	13
Mazzini L, 2003 ³⁸	1995-2000	Italy	Prospective	All	N/A	140	N/A	N/A	14
Murshid WR, 1998 ³⁹	1986-1993	Saudi Arabia	Retrospective	All	Census	633	Minor head injuries	N/A	2
Nasi D, 2018 ⁴⁰	2003-2011	Italy	Retrospective	All	Census	190	N/A	190	37
Pachatouridis D, 2013 ⁴¹	2005-2010	Greece	Retrospective	All	N/A	63	N/A	63	23
Pechmann A, 2015 ⁴²	2005-2013	Germany	Retrospective	Children	Census	12	Car accident , fall from height, and toboggan accident	N/A	5
Phuenpathom N, 1999 ⁴³	1993-1996	Thailand	Retrospective	All	Census	1080	Severe, moderate, mild TBI	N/A	17
Hu Q, 2018 ⁴⁴	2013-2016	Italy	Retrospective	All	Census	183	N/A	183	50
Roka YB, 2008 ⁴⁵	1999-2005	Nepal	Retrospective	All	Census	43	Road traffic accident	N/A	9
Ryan ME, 2017 ⁴⁶	N/A	USA	Retrospective	All	Census	388	N/A	N/A	24

Chron Dis J, Vol. 10, No. 2, Spring 2022 99

Table 1. Characteristics of included studies (continue)									
The first author, publication year	Year of survey	Country	Study design	Target population	Sampling method	Trauma patients (sample size)	Type of trauma injury	No. of patients undergoing DC	No. of patients with hydrocephalus
Sakr S, 2016 ⁴⁷	2008-2011	Egypt	Prospective	All	N/A	30	Outcome after gunshot wounds	N/A	5
Silva Neto AR, 2019 ⁴⁸	2014-2015	Brazil	Retrospective	All	Census	50	N/A	50	17
Shi SS, 2011 ⁴⁹	2004-2008	China	Retrospective	All	Census	389	N/A	N/A	48
Su TM, 2011 ⁵⁰	2005-2008	Taiwan	Retrospective	N/A	Census	13	Severe TBI	13	6
Su TM, 2019 ⁵¹	2008-2014	Taiwan	Retrospective	All	Census	143	N/A	N/A	43
Sun S, 2018 ⁵	2012-2017	China	Retrospective	All	Census	1125	Severe, moderate, mild TBI	N/A	116
Takeuchi S, 2013 ⁵²	N/A	Japan	Retrospective	N/A	N/A	23	N/A	23	11
Tian HL, 2008 ⁵³	2002-2004	China	Retrospective	All	Census	301	Motor vehicle collisions	N/A	36
Vadivelu S, 2016 ⁵⁴	2001-2010	USA USA,	Retrospective	Children	Census	28	N/A	N/A	2
Whyte J, 2013 ⁵⁵	N/A	Germany, and	N/A	All	Randomized	184	N/A	N/A	10
N NE 2000 ⁵⁶	1000 2005	Denmark	D	A 11	C	100	T	100	10
Yang XF, 2008 ⁵⁶	1998-2005	China	Retrospective	All	Census	108	Traffic accident	108	10
Yilmazlar S, 2005 ⁵⁷	1997-2003	Turkey	N/A	All	N/A	30	Traffic accident	N/A	1
Yoon SY, 2017 ⁵⁸	2004-2103	Korea	Retrospective	Children under 24 months	Census	60	Fall	N/A	2

379

N/A

172

64

Yuan Q, 2015⁵⁹ 2009-2013 China Retrospective All Census N/A: Not available; SDH: Subdural hematoma; DC: Decompressive craniectomy; TBI: Traumatic brain injury

All the studies were published from 1991 to December 2019. Among them, 21 studies had investigated the patients from Asian countries, 14 studies had investigated the patients from European countries, 10 studies were from American countries, 2 studies were from Australasian countries, and 1 study was from North African countries. The related details were also presented in table 1. The pooled prevalence of hydrocephalus in the patients with TBI was equal to 13% (95% CI: 11.0-15.0) in all the 48 studies consisting of 11624 participants, with primary definition respect to the for hydrocephalus in the patients with TBI in each study. A statistically significant heterogeneity was observed between the studies ($I^2 = 95.4\%$, P < 0.001), but there was no evidence of funnel plot asymmetry (Egger's test, P > 0.05) (Figure 2).

Prevalence of hydrocephalus in the patients with TBI according to the DC surgery: 18 studies (15, 19, 21, 23, 24, 26, 27, 30, 31, 33, 40, 41, 44, 48-50, 52, 56) reported hydrocephalus in patients with TBI according to DC surgery with total population of 1626. The pooled prevalence was 22.0% (95% CI: 18.0-26.0) with statistically significant heterogeneity between studies (I² = 78.7%, P < 0.001) but no evidence of funnel plot asymmetry or other small study effects (Egger's test, P > 0.05) (Figure 3).

Prevalence of hydrocephalus among the patients with severe TBI (sTBI): 21 studies (9, 15, 22, 25-31, 33, 35-38, 40, 42, 48-50, 52) reported hydrocephalus in the patients with sTBI with total population of 5501.

	0.01 (0.00, 0.01)
	0.10 (0.09, 0.12)
	0.02 (0.01, 0.03)
	0.03 (0.02, 0.04)
	0.00 (0.00, 0.01)
	0.11 (0.08, 0.14)
	0.12 (0.09, 0.16)
- 1	0.06 (0.04, 0.09)
	0.17 (0.13, 0.21)
	0.04 (0.02, 0.07)
-	0.12 (0.09, 0.16)
1 22	0.12 (0.09, 0.17)
	0.19 (0.14, 0.26)
	0.05 (0.03, 0.10)
	0.27 (0.21, 0.34)
	0.14 (0.10, 0.20)
	0.28 (0.22, 0.36)
	0.03 (0.01, 0.07)
	0.30 (0.23, 0.38)
	0.10 (0.06, 0.16)
	0.16 (0.11, 0.23)
	0.19 (0.13, 0.27)
	0.09 (0.05, 0.16)
	0.08 (0.04, 0.15)
	0.26 (0.18, 0.36)
	0.02 (0.01, 0.08)
	0.08 (0.04, 0.15)
	0.16 (0.10, 0.26)
	0.27 (0.18, 0.39)
	0.20 (0.12, 0.31)
·	0.30 (0.20, 0.42)
	0.37 (0.26, 0.49)
	0.54 (0.42, 0.66)
	0.03 (0.01, 0.11)
· · · · · · · · · · · · · · · · · · ·	0.27 (0.17, 0.41)
	0.34 (0.22, 0.48)
	0.07 (0.02, 0.18)
	0.21 (0.11, 0.35)
	0.10 (0.04, 0.23)
	0.03 (0.01, 0.17)
	0.17 (0.07, 0.34)
	0.14 (0.05, 0.31)
	0.07 (0.02, 0.23)
· · · · · · · · · · · · · · · · · · ·	0.35 (0.19, 0.54)
· · · · · · · · · · · · · · · · · · ·	0.46 (0.28, 0.65)
· · · · · · · · · · · · · · · · · · ·	0.48 (0.29, 0.67)
;	0.46 (0.23, 0.71)
· · · · · · · · · · · · · · · · · · ·	0.42 (0.19, 0.68)
•	0.13 (0.11, 0.15)
	energeneer Standard State and a State

Figure 2. Forest plot for the overall estimate of the prevalence of hydrocephalus in the patients with traumatic brain injury (TBI)

Chron Dis J, Vol. 10, No. 2, Spring 2022 101

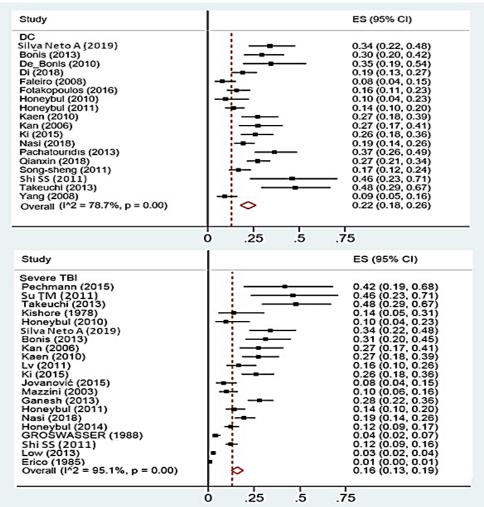
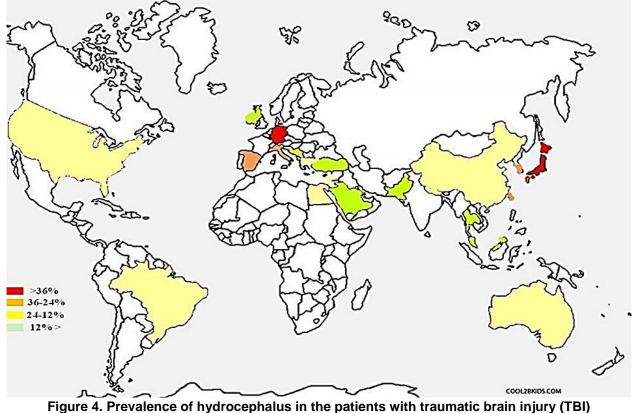


Figure 3. Prevalence of hydrocephalus in the patients with traumatic brain injury (TBI) according to the decompressive craniectomy (DC) surgery

The pooled prevalence was 16.0% (95% CI: 13.0-19.0) with statistically significant heterogeneity between studies (I² = 78.7%, P < 0.001) but no evidence of funnel plot asymmetry or other small study effects (Egger's test, P > 0.05) (Figure 3).

Global prevalence of hydrocephalus in patients with TBI: The majority of studies were conducted in the Southeast Asian or European countries. There were a few studies from North Asian and North African countries. Table 2 presents the pooled prevalence of hydrocephalus in the patients with TBI according to the geographical location. There was a statistically significant heterogeneity between the studies in all these analyses, but the results of pooled prevalence according to the geographical location showed the highest prevalence in the European countries (19.0%). Figure 4 shows the pooled prevalence with respect to the country.

Prevalence of hydrocephalus in the patients with TBI according to the study year: Among the eligible studies, 9 were conducted between 1990 and 1999 (9, 18, 20, 22, 25, 31, 38, 39, 43), 13 between 2000 and 2010 (14, 17, 23, 26, 30, 36, 40, 45, 49, 53, 54, 56, 57), and 26 between 2011 and December 2019 (5, 15, 16, 19, 21, 24, 26, 28, 29, 32-35, 37, 41, 42, 44, 46-48, 50-52, 55, 58, 59).


Table 2. Pooled prevalence of hydrocephalus in the patients with traumatic brain injury (TBI)
according to the geographical location

		Number of subjects		95% CI	$I^{2}(\%)$	P for I ²
All studies	48	11624	13.0	11.0-15.0	95.4	< 0.001
American	10	1315	15.0	10.0-20.0	< 50.0	< 0.001
Australasian	2	205	13.0	8.0-18.0	N/A	N/A
European	14	3491	19.0	13.0-25.0	< 50.0	< 0.001
Middle East Asian	3	1122	2.0	0.0-5.0	N/A	N/A
North African	1	30	17.0	7.0-34.0	N/A	N/A
North Asian	1	43	21.0	11.0-35.0	N/A	N/A
South East Asian	17	5418	13.0	11.0-15.0	< 50.0	< 0.001

CI: Confidence interval; N/A: Not applicable, too few studies to assess heterogeneity

The prevalence of hydrocephalus in the patients with TBI was generally lower in the studies conducted between 1990-1999 (4.0%), compared to those conducted from 2000 to 2010 (12.0%) and 2011 to December 2019 (18.0%) (Table 3).

Prevalence of hydrocephalus in the patients with TBI according to the sample size: Among the eligible studies, 25 were conducted among a sample size lower than 100 (14, 15, 17-20, 23, 26, 29-31, 33-35, 37, 41, 42, 45, 47, 48, 50, 52, 54, 57, 58), 20 studies were done with a sample size between 100-1000 patients (5, 9, 17, 21, 24, 25, 27, 28, 32, 36, 38-40, 44, 46, 49, 53, 55, 56, 59), and 3 studies were done among a sample size lower than 1000 (5, 22, 43). The prevalence of hydrocephalus in the patients with TBI was generally higher in the studies conducted with a sample size lower than 100 (21.0%), in proportion to other studies (Table 3).

according to the country

Chron Dis J, Vol. 10, No. 2, Spring 2022 103

http://cdjournal.muk.ac.ir, 04 April

	Number of studies	Number of subjects	Pooled prevalence	95% CI	$\mathbf{I}^{2}(\%)$	P for I ²
All studies	48	11624	13.0	11.0- 15.0	95.4	< 0.001
Year of survey						
1990-1999	9	4883	4.0	2.0-6.0	93.7	< 0.001
2000-2010	13	2399	12.0	8.0-16.0	90.5	< 0.001
2011-2020	26	4342	18.0	15.0- 22.0	90.6	< 0.001
Sample size						
< 100	25	1282	21.0	16.0- 26.0	88.9	< 0.001
100-1000	20	4572	12.0	9.0-15.0	96.5	< 0.001
> 1000	3	5763	4.0	1.0-7.0	N/A	N/A
Study design						
Retrospective	33	9899	12.0	10.0- 14.0	95.9	< 0.001
Observational	2	311	7.0	4.0-9.0	N/A	N/A
Cohort	2	294	13.0	10.0- 17.0	N/A	N/A
Prospective or cross-sectional	6	418	12.0	8.0-16.0	0.0	0.520

 Table 3. Pooled prevalence of hydrocephalus in the patients with traumatic brain injury (TBI)

 according to the year of survey, sample size, and study design

CI: Confidence interval; N/A: Not available

Prevalence of hydrocephalus in the patients with TBI according to the study design: There were 33 studies that reported the prevalence through retrospective studies (5, 15-17, 20-24, 26, 27, 30, 31, 33, 36, 39-46, 48-54, 56, 58, 59) and 6 were prospective or cross-sectional studies (25, 28, 29, 35, 37, 38). The prevalence of hydrocephalus in patients with TBI was not too different according to study design (Table 3).

Discussion

PTH is considered as an important injury that could influence the rehabilitation outcome and final prognosis of the patients with TBI.^{8,10} If PTH is not properly treated or diagnosed, the patients with TBI will have lower functional outcome, and higher morbidity or even higher mortality rate will occur.⁸. In our study, worldwide prevalence of PTH in the patients with TBI was obtained as 13%. However, under the influence of TBI severity and type of treatment option, its prevalence was equal to 16% in the patients with sTBI and it was equal to 22% in the patients who underwent DC. Similar to our results, numerous reports supported a strong association between the PTH occurrence and sTBI in up to 70% of patients with PTH.60,61 In the patients with sTBI, although benign ventriculomegaly is a common complication with an incidence rate of up to 86%, the prevalence of PTH requiring treatment is lower (less or about 10%).60,62 The related literature indicates that the incidence of PTH occurring concomitant with the DC widely varies from less than 10% up to 50%.6,53 Some hypotheses could support higher incidence of PTH in the patients with TBI who underwent DC. Firstly, the change in the CSF dynamics and circulation pathways after could an craniectomy cause imbalance between CSF formation and the altered CSF reabsorption.63 Secondly, it has been revealed that there is an association between the sTBI and higher incidence of PTH. On the other hand, DC is performed mostly in the patients with sTBI.8 As a result, PTH is more likely to

occur in the patients who underwent DC. In addition, some reports have indicated the role of repeated operations in occurrence of PTH concomitant with DC.⁶⁴

In our study, prevalence of PTH was higher in the developed countries compared to other countries, so that the mean prevalence of PTH in European countries was equal to 19%. Even in some of European countries as well as developed East Asian countries, e.g., Japan, South Korea, and Taiwan, the prevalence of PTH was more than 36%. As a result, the results of this meta-analysis revealed a higher prevalence of TBI in the developed countries compared to the least-developed countries (LDCs) although based on the literature, there is a higher prevalence of TBI in latter ones in terms of road traffic collisions.65 This difference could be due to some issues in association with the LDCs, e.g., sampling procedure and variable diagnostic protocols for PTH during the study period such as lack of similarity for definition of PTH and variable inclusion criteria in the related literature.53 In addition, in the LDCs, the patients with mild TBI are not admitted and finally, well thev are underdiagnosed; the patients with the injuries caused by low-velocity road traffic accidents, falls, and sport-related concussions are classified into this group.65 Another reason for this difference could be a less availability of more detailed documented information about the patients with TBI in the LDCs and undeveloped countries.66 On the other hand, the availability of neuroradiologic diagnostic tools also contributes to publication of a true report on the prevalence and prognosis of PTH.⁶⁷ Further, herein, high quality published researches were used based on our study design; thus, it is possible that some LDCsrelated studies have been excluded due to not meeting our inclusion criteria. Therefore, the results of the study may be influenced by the information obtained from the LDCs.

Considering the sample size of the studies, results of this meta-analysis revealed a higher prevalence of PTH in the studies with less than 100 included patients in comparison with other studies. This finding should be cautiously interpreted as there is a possibility of selection bias or maybe the surveys have been performed in a highly selected group of the patients with sTBI. Finally, according to the study year, an obvious increase was observed in the prevalence of PTH in the recent years that seems to be as a result of improvement, advances, and availability of the diagnostic neuroradiologic tools in the studied countries.⁶⁷

Conclusion

The results of the present study revealed that the prevalence of PTH was higher in the patients with sTBI (16%) and patients who underwent DC (22%) compared to its worldwide mean prevalence (13%). Especially, performing DC in the patients with TBI is highly correlated with higher prevalence of PTH. As a result, it is recommended to design a prospective clinical study in order to explain the true dynamics and circulation of the CSF after DC. Besides, there is a need to evaluate the cost-effectiveness of DC in reducing the intracranial pressure compared to other available options such as barbiturate coma, external ventricular drain insertion, transient hyperventilation, mannitol administration, etc. Finally, it is noteworthy that performing the clinical studies with higher quality in the LDCs could provide more reliable related results to achieve a true global conclusion.

Conflict of Interests

Authors have no conflict of interests.

Acknowledgments

The authors would like to thank all the participants who took part in this study.

Financials support and sponsorship

This study was supported and approved by the Ethics Committee of Kurdistan University of Medical Sciences, Sanandaj, Iran, under the ethics code No. IR.MUK.REC.1399.102.

References

- 1. Peeters W, van den Brande R, Polinder S, Brazinova A, Steyerberg EW, Lingsma HF, et al. Epidemiology of traumatic brain injury in Europe. Acta Neurochir (Wien). 2015; 157(10): 1683-96.
- 2. Maas AI, Stocchetti N, Bullock R. Moderate and severe traumatic brain injury in adults. Lancet Neurol. 2008; 7(8): 728-41.
- 3. Finfer SR, Cohen J. Severe traumatic brain injury. Resuscitation. 2001; 48(1): 77-90.
- Marshall LF, Gautille T, Klauber MR, Eisenberg HM, Jane JA, Luerssen TG, et al. The outcome of severe closed head injury. J Neurosurg. 1991; 75(Suppl): S28-S36.
- 5. Sun S, Zhou H, Ding ZZ, Shi H. Risk factors associated with the outcome of post-traumatic hydrocephalus. Scand J Surg. 2019; 108(3): 265-70.
- Ding J, Guo Y, Tian H. The influence of decompressive craniectomy on the development of hydrocephalus: a review. Arq Neuropsiquiatr. 2014; 72(9): 715-20.
- 7. Guyot LL, Michael DB. Post-traumatic hydrocephalus. Neurol Res. 2000; 22(1): 25-8.
- Mazzini L, Campini R, Angelino E, Rognone F, Pastore I, Oliveri G. Posttraumatic hydrocephalus: A clinical, neuroradiologic, and neuropsychologic assessment of long-term outcome. Arch Phys Med Rehabil. 2003; 84(11): 1637-41.
- Groswasser Z, Cohen M, Reider-Groswasser I, Stern MJ. Incidence, CT findings and rehabilitation outcome of patients with communicative hydrocephalus following severe head injury. Brain Inj. 1988; 2(4): 267-72.
- 10. Beyerl B, Black PM. Posttraumatic hydrocephalus. Neurosurgery. 1984; 15(2): 257-61.
- Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int J Surg. 2010; 8(5): 336-41.
- 12. Hoy D, Brooks P, Woolf A, Blyth F, March L, Bain C, et al. Assessing risk of bias in prevalence studies: modification of an existing tool and evidence of interrater agreement. J Clin Epidemiol. 2012; 65(9): 934-9.
- Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003; 327(7414): 557-60.
- 14. Beauchamp KM, Kashuk J, Moore EE, Bolles G, Rabb C, Seinfeld J, et al. Cranioplasty after postinjury decompressive craniectomy: Is timing of the essence? J Trauma. 2010; 69(2): 270-4.
- 15. De Bonis P, Sturiale CL, Anile C, Gaudino S, Mangiola A, Martucci M, et al. Decompressive

craniectomy, interhemispheric hygroma and hydrocephalus: A timeline of events? Clin Neurol Neurosurg. 2013; 115(8): 1308-12.

- 16. Chen H, Yuan F, Chen SW, Guo Y, Wang G, Deng ZF, et al. Predicting posttraumatic hydrocephalus: Derivation and validation of a risk scoring system based on clinical characteristics. Metab Brain Dis. 2017; 32(5): 1427-35.
- 17. Chen L, Bao Y, Liang Y, Wang Y, Jiang J. Surgical management and outcomes of non-missile open head injury: Report of 44 cases from a single trauma centre. Brain Inj. 2016; 30(3): 318-23.
- 18. d'Avella D, Servadei F, Scerrati M, Tomei G, Brambilla G, Massaro F, et al. Traumatic acute subdural haematomas of the posterior fossa: clinicoradiological analysis of 24 patients. Acta Neurochir (Wien). 2003; 145(12): 1037-44.
- De Bonis P, Pompucci A, Mangiola A, Rigante L, Anile C. Post-traumatic hydrocephalus after decompressive craniectomy: An underestimated risk factor. J Neurotrauma. 2010; 27(11): 1965-70.
- Demircivi F, Ozkan N, Buyukkececi S, Yurt I, Miniksar F, Tektas S. Traumatic subarachnoid haemorrhage: Analysis of 89 cases. Acta Neurochir (Wien). 1993; 122(1-2): 45-8.
- 21. Di G, Hu Q, Liu D, Jiang X, Chen J, Liu H. Risk factors predicting posttraumatic hydrocephalus after decompressive craniectomy in traumatic brain injury. World Neurosurg. 2018; 116: e406-e413.
- 22. Cardoso ER, Galbraith S. Posttraumatic hydrocephalus--a retrospective review. Surg Neurol. 1985; 23(3): 261-4.
- 23. Faleiro RM, Faleiro LC, Caetano E, Gomide I, Pita C, Coelho G, et al. Decompressive craniotomy: Prognostic factors and complications in 89 patients. Arq Neuropsiquiatr. 2008; 66(2B): 369-73.
- 24. Fotakopoulos G, Tsianaka E, Siasios G, Vagkopoulos K, Fountas K. Posttraumatic hydrocephalus after decompressive craniectomy in 126 patients with severe traumatic brain injury. J Neurol Surg A Cent Eur Neurosurg. 2016; 77(2): 88-92.
- 25. Ganesh S, Guernon A, Chalcraft L, Harton B, Smith B, Louise-Bender PT. Medical comorbidities in disorders of consciousness patients and their association with functional outcomes. Arch Phys Med Rehabil. 2013; 94(10): 1899-907.
- Honeybul S. Complications of decompressive craniectomy for head injury. J Clin Neurosci. 2010; 17(4): 430-5.
- Honeybul S, Ho KM. Long-term complications of decompressive craniectomy for head injury. J Neurotrauma. 2011; 28(6): 929-35.
- 28. Honeybul S, Ho KM. Decompressive craniectomy for severe traumatic brain injury: the relationship between

106 Chron Dis J, Vol. 10, No. 2, Spring 2022

surgical complications and the prediction of an unfavourable outcome. Injury. 2014; 45(9): 1332-9.

- 29. Jovanovic M, Vujotic L, Janosevic V, Soldatovic I, Radulovic D, Bogosavljevic V. Modified "inwindow" technique for decompressive craniotomy for severe brain injury. Arch Biol Sci. 2015; 67(1): 275-81.
- 30. Kaen A, Jimenez-Roldan L, Alday R, Gomez PA, Lagares A, Alen JF, et al. Interhemispheric hygroma after decompressive craniectomy: does it predict posttraumatic hydrocephalus? J Neurosurg. 2010; 113(6): 1287-93.
- 31. Kan P, Amini A, Hansen K, White GL, Brockmeyer DL, Walker ML, et al. Outcomes after decompressive craniectomy for severe traumatic brain injury in children. J Neurosurg. 2006; 105(5 Suppl): 337-42.
- 32. Khan Z, Sharafat S, Ali M, Aman R, Khan KM, Alam I, et al. Bomb blast head injuries: A two years' experience of 154 patients. Rawal Medical Journal. 2012; 37(4): 417-20.
- 33. Ki HJ, Lee HJ, Lee HJ, Yi JS, Yang JH, Lee IW. The risk factors for hydrocephalus and subdural hygroma after decompressive craniectomy in head injured patients. J Korean Neurosurg Soc. 2015; 58(3): 254-61.
- 34. Kim H, Lee HS, Ahn SY, Park SC, Huh W. Factors associated postoperative hydrocephalus in patients with traumatic acute subdural hemorrhage. J Korean Neurosurg Soc. 2017; 60(6): 730-7.
- 35. Kishore PR, Lipper MH, Miller JD, Girevendulis AK, Becker DP, Vines FS. Post-traumatic hydrocephalus in patients with severe head injury. Neuroradiology. 1978; 16: 261-5.
- 36. Low CY, Low YY, Lee KK, Chan SP, Ang BT. Post-traumatic hydrocephalus after ventricular shunt placement in a Singaporean neurosurgical unit. J Clin Neurosci. 2013; 20(6): 867-72.
- 37. Lv LQ, Hou LJ, Yu MK, Qi XQ, Chen HR, Chen JX, et al. Risk factors related to dysautonomia after severe traumatic brain injury. J Trauma. 2011; 71(3): 538-42.
- Mazzini L, Cossa FM, Angelino E, Campini R, Pastore I, Monaco F. Posttraumatic epilepsy: Neuroradiologic and neuropsychological assessment of long-term outcome. Epilepsia. 2003; 44(4): 569-74.
- Murshid WR. Management of minor head injuries: Admission criteria, radiological evaluation and treatment of complications. Acta Neurochir (Wien). 1998; 140(1): 56-64.
- 40. Nasi D, Dobran M, Di Rienzo A, di Somma L, Gladi M, Moriconi E, et al. Decompressive craniectomy for traumatic brain injury: The role of cranioplasty and hydrocephalus on outcome. World Neurosurg. 2018; 116: e543-e549.

- 41. Pachatouridis D, Alexiou GA, Mihos E, Fotakopoulos G, Voulgaris S. The value of programmable shunt valves for the management of subdural collections in patients with hydrocephalus. ScientificWorldJournal. 2013; 2013: 461896.
- 42. Pechmann A, Anastasopoulos C, Korinthenberg R, van Velthoven-Wurster V, Kirschner J. Decompressive craniectomy after severe traumatic brain injury in children: Complications and outcome. Neuropediatrics. 2015; 46(1): 5-12.
- 43. Phuenpathom N, Ratanalert S, Saeheng S, Sripairojkul B. Post-traumatic hydrocephalus: Experience in 17 consecutive cases. J Med Assoc Thai. 1999; 82(1): 46-53.
- 44. Hu Q, Di G, Shao X, Zhou W, Jiang X. Predictors Associated with post-traumatic hydrocephalus in patients with head injury undergoing unilateral decompressive craniectomy. Front Neurol. 2018; 9: 337.
- 45. Roka YB, Kumar P, Bista P, Sharma GR, Adhikari P. Traumatic posterior fossa extradural haematoma. JNMA J Nepal Med Assoc. 2008; 47(172): 174-8.
- 46. Ryan ME, Jaju A, Ciolino JD, Alden T. Rapid MRI evaluation of acute intracranial hemorrhage in pediatric head trauma. Neuroradiology. 2016; 58(8): 793-9.
- 47. Sakr S, Azzazi A, Elsayed AA, Fathalla H. Surgical management of penetrating intracranial bullet injuries. Neurosurg Q. 2014; 26(1): 37-41.
- 48. Silva Neto AR, Valenca MM. Transcalvarial brain herniation volume as a predictor of posttraumatic hydrocephalus after decompressive craniectomy. Clin Neurol Neurosurg. 2019; 182: 73-8.
- 49. Shi SS, Zhang GL, Zeng T, Lin YF. Posttraumatic hydrocephalus associated with decompressive cranial defect in severe brain-injured patients. Chin J Traumatol. 2011; 14(6): 343-7.
- 50. Su TM, Lee TH, Huang YH, Su FW, Chen WF. Contralateral subdural effusion after decompressive craniectomy in patients with severe traumatic brain injury: Clinical features and outcome. J Trauma. 2011; 71(4): 833-7.
- 51. Su TM, Lan CM, Lee TH, Hsu SW, Tsai NW, Lu CH. Risk factors for the development of posttraumatic hydrocephalus after unilateral decompressive craniectomy in patients with traumatic brain injury. J Clin Neurosci. 2019; 63: 62-7.
- 52. Takeuchi S, Takasato Y, Masaoka H, Hayakawa T, Yatsushige H, Shigeta K, et al. Hydrocephalus following decompressive craniectomy for ischemic stroke. Acta Neurochir Suppl. 2013; 118: 289-91.
- 53. Tian HL, Xu T, Hu J, Cui YH, Chen H, Zhou LF. Risk factors related to hydrocephalus after traumatic subarachnoid hemorrhage. Surg Neurol. 2008; 69(3): 241-6.

Chron Dis J, Vol. 10, No. 2, Spring 2022 107

- 54. Vadivelu S, Effendi S, Starke JR, Luerssen TG, Jea A. A review of the neurological and neurosurgical implications of tuberculosis in children. Clin Pediatr (Phila). 2013; 52(12): 1135-43.
- 55. Whyte J, Nordenbo AM, Kalmar K, Merges B, Bagiella E, Chang H, et al. Medical complications during inpatient rehabilitation among patients with traumatic disorders of consciousness. Arch Phys Med Rehabil. 2013; 94(10): 1877-83.
- 56. Yang XF, Wen L, Shen F, Li G, Lou R, Liu WG, et al. Surgical complications secondary to decompressive craniectomy in patients with a head injury: a series of 108 consecutive cases. Acta Neurochir (Wien). 2008; 150(12): 1241-7.
- 57. Yilmazlar S, Kocaeli H, Dogan S, Abas F, Aksoy K, Korfali E, et al. Traumatic epidural haematomas of nonarterial origin: Analysis of 30 consecutive cases. Acta Neurochir (Wien). 2005; 147(12): 1241-8.
- 58. Yoon SY, Choi YJ, Park SH, Hwang JH, Hwang SK. Traumatic brain injury in children under age 24 months: Analysis of demographic data, risk factors, and outcomes of post-traumatic seizure. J Korean Neurosurg Soc. 2017; 60(5): 584-90.
- 59. Yuan Q, Wu X, Yu J, Sun Y, Li Z, Du Z, et al. Subdural hygroma following decompressive craniectomy or non-decompressive craniectomy in patients with traumatic brain injury: Clinical features and risk factors. Brain Inj. 2015; 29(7-8): 971-80.
- 60. Sarkari A, Gupta DK, Sinha S, Kale SS, Mahapatra AK. Post-traumatic hydrocephalus: Presentation,

management and outcome-An apex trauma centre experience. Indian J Neurotrauma. 2010; 7(2): 135-8.

- Yerramneni V, Kotha V. Posttraumatic hydrocephalus: risk factors, treatment modalities, and prognosis. Indian J Neurosurg. 2017; 06(03): 198-202. Goldschmidt E, Angriman F, Jha RM, Zusman B, Puccio A, Okonkwo DO. Incidence and risk factors for developing post-traumatic hydrocephalus, analysis of a prospective cohort of 402 patients. Neurosurgery. 2019; 66(Suppl 1): 310-687.
- 63. Honeybul S, Ho KM. Incidence and risk factors for post-traumatic hydrocephalus following decompressive craniectomy for intractable intracranial hypertension and evacuation of mass lesions. J Neurotrauma. 2012; 29(10): 1872-8.
- 64. Choi I, Park HK, Chang JC, Cho SJ, Choi SK, Byun BJ. Clinical factors for the development of posttraumatic hydrocephalus after decompressive craniectomy. J Korean Neurosurg Soc. 2008; 43(5): 227-31.
- 65. Dewan MC, Rattani A, Gupta S, Baticulon RE, Hung YC, Punchak M, et al. Estimating the global incidence of traumatic brain injury. J Neurosurg. 2018; 130(4): 1080-97.
- 66. Roozenbeek B, Maas AI, Menon DK. Changing patterns in the epidemiology of traumatic brain injury. Nat Rev Neurol. 2013; 9(4): 231-6.
- 67. Le TH, Gean AD. Neuroimaging of traumatic brain injury. Mt Sinai J Med. 2009; 76(2): 145-62.