The incidence of permanent congenital hypothyroidism: A systematic review and meta-analysis

Asrin Karimi1*, Maryam Parvareh1, Gholab Moradi1, Bijan Nouri1, Parvin Allahyari1

1 Social Determinants of Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran

Abstract

BACKGROUND: One of the most prevalent endocrine disorders is congenital hypothyroidism (CH). The most important complication of this disorder is mental retardation. This study was carried out to evaluate CH prevalence based on newborn screening of CH in different countries through a meta-analysis study.

METHODS: The researchers in this study searched the literature among PubMed/Medline, Scopus, Google Scholar, ISI Web of Sciences and Web of Knowledge, and Science Direct databases. The evaluations were carried out using a researcher-made checklist including goals and research questions. Meta-regression with the Mantel-Haenszel method was performed using a random effects model and Egger’s test (ET) and Begg’s test (BT) by the STATA software.

RESULTS: A total of 10875 studies were found in the initial literature search related to CH. Ultimately, based on the eligibility criteria considered in the present study, 25 studies were categorized as qualified for systematic review and meta-analysis. The estimate of the CH prevalence among the screened neonates in the studies based on the random effects model was 4.85 per 10000 [95% confidence interval (CI): 4.04-5.66].

CONCLUSION: Due to the importance of CH related diseases especially for detection of type of hypothyroidism, it is necessary more surveillance be carried out in all countries. Based on Different studies, recognition of the most CH patients is before age 1 year so it helps to reduction the risks of developmental delay, and delayed physiological development and mental retardation.

KEYWORDS: Congenital Hypothyroidism, Hypothyroidism, Prevalence, Meta-Analysis

Introduction

One of the most prevalent disorders in children is congenital hypothyroidism (CH). Newborn screening for CH has been addressed in developed countries for more than 40 years. However, this plan has been started in developing countries in recent years.1 The first CH screening was conducted in North America. Screening helps early diagnosis of infants with CH and prevents side effects resulting from this complication. Since most of the infants with CH have normal appearance with no sign of disease, they can be identified through blood test for CH.2 It is estimated that 25% of 127 million of birth population worldwide undergo CH screening.3 Given the preventable and treatable nature of this disorder, it is clear that delay in treatment of CH may cause neurological and intelligence quotient (IQ) problems.4 The most usual type of CH is primary hypothyroidism which is diagnosed by T4 and thyroid-stimulating hormone (TSH) levels, so infants must be diagnosed properly and treated quickly to prevent permanent CH and physical delays.5 It

is notable that some parents of the children with CH discontinue thyroid hormone replacement based on the inappropriate medical advice and sometimes without a follow-up. Incidence rates of CH vary in different parts of the world and in various times. It was reported in the range of 1:1000 to 1:4000. Based on a study in French during the 20-year period, the permanent CH incidence was 1:10000, while this rate was found to be about 1:1800 in Greece over an 11-year period. There is some evidence that CH incidence has been increased from 1:4094 to 1:2372 in the United States in 1987 and 2002, respectively. One justifying reason is changes in the diagnostic strategies. There have been numerous studies carried out worldwide with different prevalence rates of CH, therefore the aim in this study was to evaluate the overall prevalence of CH through a systematic review and meta-analysis.

Materials and Methods

The study researchers searched and identified studies on CH with reports regarding the children with CH diagnosed during neonate screening program all around the world from January 1, 2010 to June 8, 2016. All the eligible studies were listed by searching the international databases such as Google Scholar, Scopus, PubMed/Medline, Web of Science, and Science Direct. Various combinational terms were searched for to find a large range of literature, including: “Congenital hypothyroidism” “Congenital hypothyroidism and prevalence”, “Congenital hypothyroidism and incidence”, and “Congenital hypothyroidism and epidemiology”; the search was limited to no patent and in the 2010-2016 period in the Google Scholar. Moreover, to search in PubMed, all studies in English on human with medical subject headings (MeSH), in the abstract, title, and text were investigated.

All essential data from the listed references were investigated by two of the researchers (Asrin Karimi1 and Maryam Parvareh). Appraisal was performed using a checklist containing the study objectives and other research questions. Some studies with no inclusion criteria were deleted.

The following information was extracted from the enrolled studies: year of study, number of detected newborns with permanent CH, sample size, country, author, and title based on the standardized form. The prepared data was reviewed twice by two reviewers independently. All gathered articles were assessed according to the critical checklists STROBE and MOOSE.

Data analysis was performed using the STATA software version 12. Heterogeneity of the studies was appraised by the I² statistics. This value was I² = 98.4% (P < 0.100). The I² statistic was employed to evaluate the percentage of the observed variability due to heterogeneity rather than chance and varied from 0 to 100%, with values of 0% and 100% expressing no observed heterogeneity and significant heterogeneity, respectively. The random model was used while I² > 50%, otherwise the fixed effect model was performed. Thus, the random model was used due to I² > 50%. The presence of study bias was determined by the funnel plot and conducting the Begg’s test. P < 0.050 was considered to indicate a statistically significant difference. Furthermore, the univariate approach was employed to evaluate the causes of heterogeneity among the studies and the Egger test was conducted to assess potential study bias.

Results

A total of 10875 studies were found in the initial literature search related to CH. After precise screening of the abstract, title, and text of some of the studies, 10782 ones did not meet the inclusion criteria and some were duplicated, hence they were excluded and
about 93 articles were selected for reading carefully. Ultimately, based on the eligibility criteria considered in the present study, 25 studies were categorized as qualified for systematic review and meta-analysis (Figure 1) (Table 1).

The estimate of the CH prevalence among the screened neonates in the studies based on the random effects model was 4.85 per 10000 [95% confidence interval (CI): 4.04- 5.66] (Figure2). According to the meta-regression graphs (Figure 3), there was no relationship between the prevalence of CH and year of publication of the studies (P = 0.440) and the prevalence of CH and sample size (P = 0.300) (Figure 4). Thus, the prevalence of CH among the screened neonates did not change based on the year of publication of the studies and the sample size significantly.

![Figure 1. Flow of data in different phases of the systematic review](image)

Table 1. Characteristics of the studies selected

<table>
<thead>
<tr>
<th>Authors</th>
<th>Study area</th>
<th>Number of neonates screened</th>
<th>Number of neonates with permanent CH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bekhit and Yousef</td>
<td>Egypt</td>
<td>731743</td>
<td>204</td>
</tr>
<tr>
<td>Zhao et al.</td>
<td>China</td>
<td>5142148</td>
<td>1922</td>
</tr>
<tr>
<td>Deladoey et al.</td>
<td>Canada</td>
<td>1660857</td>
<td>620</td>
</tr>
<tr>
<td>Hettiarachchi and Aramarasa</td>
<td>Sri Lanka</td>
<td>78,167</td>
<td>47</td>
</tr>
<tr>
<td>Palhares et al.</td>
<td>Brazil</td>
<td>32278</td>
<td>16</td>
</tr>
<tr>
<td>Anastasovska et al.</td>
<td>Macedonia</td>
<td>9757</td>
<td>8</td>
</tr>
<tr>
<td>Al Hosani et al.</td>
<td>UAE</td>
<td>698 629</td>
<td>373</td>
</tr>
<tr>
<td>Chen et al.</td>
<td>Taiwan</td>
<td>3000000</td>
<td>1482</td>
</tr>
<tr>
<td>Ascurra et al.</td>
<td>Paraguay</td>
<td>53360</td>
<td>35</td>
</tr>
<tr>
<td>Al-Jurayyan and Al Jurayyan</td>
<td>Saudi Arabia</td>
<td>1,007,350</td>
<td>306</td>
</tr>
<tr>
<td>Samardzic et al.</td>
<td>Montenegro</td>
<td>40758</td>
<td>17</td>
</tr>
<tr>
<td>Kaur et al.</td>
<td>India</td>
<td>6813</td>
<td>5</td>
</tr>
<tr>
<td>Kocova et al.</td>
<td>Macedonia</td>
<td>215077</td>
<td>83</td>
</tr>
<tr>
<td>Cornejo et al.</td>
<td>Chile</td>
<td>2,478,123</td>
<td>273</td>
</tr>
<tr>
<td>Wintergerst et al.</td>
<td>America</td>
<td>751,144</td>
<td>409</td>
</tr>
<tr>
<td>Aminzadeh et al.</td>
<td>Iran</td>
<td>47,075</td>
<td>142</td>
</tr>
<tr>
<td>Golbhar et al.</td>
<td>Bahrain</td>
<td>17806</td>
<td>6</td>
</tr>
<tr>
<td>Atas et al.</td>
<td>Konya-Turkey</td>
<td>93,897</td>
<td>43</td>
</tr>
<tr>
<td>Juan-Fita et al.</td>
<td>Spain</td>
<td>71,595</td>
<td>38</td>
</tr>
<tr>
<td>Kusdal et al.</td>
<td>Kocaeli-Turkey</td>
<td>28,188</td>
<td>39</td>
</tr>
<tr>
<td>Hussain et al.</td>
<td>Malaysia</td>
<td>12928</td>
<td>2</td>
</tr>
<tr>
<td>Sun et al.</td>
<td>China</td>
<td>442,454</td>
<td>183</td>
</tr>
<tr>
<td>Gopalakrishnan et al.</td>
<td>India</td>
<td>13426</td>
<td>11</td>
</tr>
<tr>
<td>Woo et al.</td>
<td>America</td>
<td>92,800</td>
<td>11</td>
</tr>
<tr>
<td>Cameo et al.</td>
<td>Colombia</td>
<td>34,363</td>
<td>19</td>
</tr>
</tbody>
</table>

CH: Congenital hypothyroidism; UAE: United Arab Emirates
Figure 2. Forest plot of the prevalence of the studies on congenital hypothyroidism (CH) conducted worldwide in the 2010-2018 period
CI: Confidence interval

Figure 3. Meta-regression plot of congenital hypothyroidism (CH) prevalence based on the year of publication

Figure 4. Meta-regression plot of congenital hypothyroidism (CH) prevalence based on the sample size

The Egger’s test was performed to assess the small study effect (P < 0.001).

Discussion
The current study reported a systematic review and meta-analysis on the CH screening program in newborn children based on 25 sample studies among a total of 14793617 neonates.

As it seems, it is the first time that the prevalence of CH is reported considering all studies published in this field worldwide. The pilot CH screening was implemented in 1972 in North America for the first time. In this study, the overall prevalence of the permanent CH was 4.85:10000 neonates. Meanwhile, the studies conducted in other parts of the world
have reported an incidence rate of 1-50% for the transient CH among the children with CH. It is accepted that about 10-15% of the children diagnosed of the primary CH have transient type of CH at last. Different fractions of the incidence of the two types of CH has been reported from different countries with different cultures, nations, and races. In addition, the incidence of total CH varies in different parts of the world. For instance, a CH incidence rate of 1:10,000 vs. 1:2000 has been reported among the blacks in comparison with the Hispanic and native American people, respectively. Transient CH may be the result of some maternal factors such as the excessive iodine intake, iodine deficiency, anti-thyroid medication, or existence of antibodies against thyroid tissue during pregnancy. One of the limitations of the study was that the different incidence rates of the permanent CH reported in different studies may be unreliable, because confirmation of the permanent CH needs to follow up patients for 3 years after the first diagnosis. The prevalence of CH is significantly depending on the study area, thus it is important that countries report correct and accurate information in order to make decisions about the deployment of the best solutions and conduct more studies to gain knowledge on the cause of CH in those areas. In some studies, the incidence of permanent CH was higher than that of the transient CH. The prevalence of permanent and transient CH was 1:3587 and 1:16667 live births, respectively. Other limitations were observed in the studies found based on the search, as most of them did not distinguish children based on gender after determining the type of CH (transient or permanent). Some studies indicated that the CH incidence was higher in girls compared to boys. It was found in recent studies that practically all screening programs report a predominance for the female gender, about 2:1 female-to-male ratio. The female/male ratio varies in different studies, for instance, it was 19.6% higher among women than men and 3:1 in Saudi Arabia. A male preponderance of 1:1.41 was also reported in a study in East Azerbaijan Province, Iran, probably due to the high prevalence of consanguineous marriages. Different studies have reported a variety of CH incidence trend over time, for instance in a study conducted in Taiwan, the CH incidence increased by 10% from 1997 to 2004 and decreased after 2005. The peak incidence rate in the 1997-2008 period in this population was 7.68:10000 infants in 2001. The female/male ratio differed during the 12 years of study. In comparison with the present study, this study did not show significant incidence of CH over the study period. That may be due to the diagnosis criteria or registry systems.

Conclusion

More surveillance of CH-related diseases, especially for detection of the type of hypothyroidism needs to be carried out in the future. Data obtained from the studies on patients with CH show that most of the patients with CH are diagnosed before the age of 1 year and that early diagnosis can decrease the risks of developmental delay, mental retardation, and delayed physiological development.

Conflict of Interests

Authors have no conflict of interests.

Acknowledgments

This work was supported by a research grant from deputy research of Kurdistan University of Medical Sciences, Sanandaj, Iran. The authors would like to appreciate their financial support. The grant number is “IR.MUK.REC.1394.355”.

References

Incidence of permanent congenital hypothyroidism

Karimi et al.

